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We consider a generalized version of Atwood’s machine (see [1]) when two bodies of masses
m1, m2 (m2 ≥ m1) are attached to opposite ends of a massless inextensible thread wound
round two massless frictionless pulleys of negligibly small radius. Two separated pulleys are
used to avoid collisions of the bodies. Body m2 is constrained to move only along a vertical
while body m1 moves like a spherical pendulum of variable length. Such a system has three
degrees of freedom and its motion is described by the following differential equations

(1 + µ)r̈ = rθ̇2 − g(µ− cos θ) +
p2φ(1 + µ)2

r3 sin2 θ
,

rθ̈ = −2ṙθ̇ − g sin θ +
p2φ(1 + µ)2 cos θ

r3 sin3 θ
,

θ̇ =
pφ(1 + µ)

r2 sin2 θ
. (1)

Here r is a length of the thread between pulley and body m1, φ and θ are the spherical angles,
g is a gravitational constant, and parameter µ = m2/m1. As there is no torque about the
vertical line the system has an integral of motion pφ = r2θ̇ sin2 φ/(1+µ) that is determined
from the initial conditions.

Note that in case of pθ = 0 body m1 oscillates in a vertical plane and we obtain the swinging
Atwood machine that was a subject of many papers (see, for example, [2], [3]). It was shown
that even small oscillations can modify the system motion significantly and some unexpected
kinds of motion such as periodic or quasi-periodic motion can arise.

Here we consider the case pθ ̸= 0 when new kind of motion can arise. For example, there
exists a conical motion when r = r0, θ = θ0 and φ̇ = ω are constants. The corresponding
solution of system (1) describes a uniform motion of body m1 in a horizontal plane on a cir-
cular orbit of radius r0 sin θ0. Simulation of the system motion shows that small variation of
the initial conditions results only in small perturbation of the body m1 orbit. Doing necessary
symbolic calculation and analyzing the Hamiltonian function of the system we prove orbital
stability of this solution. All relevant symbolic and numerical calculations and visualization
of the results are performed with the computer algebra system Mathematica [4].
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