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A translational surface is a rational tensor product surface generated from two ra-
tional space curves by translating either one of these curves parallel to itself in
such a way that each of its points describes a curve that is a translation along the
other curve. Translational surfaces, ruled surfaces, swept surfaces, along with low
degree surfaces such as quadratic and cubic surfaces, are basic modeling surfaces
that are widely used in computer aided geometric design and geometric modeling.

Since translational surfaces are generated from two space curves, translational
surfaces have simple representations. The simplest and perhaps the most common
representation of a translational surface is given by the rational parametric rep-
resentation h∗(s; t) = f∗(s) + g∗(t), where f∗(s) and g∗(t) are two rational space
curves. Translational surfaces represented by h∗(s; t) = f∗(s)+g∗(t) have been in-
vestigated by differential geometers, and also studied from a geometric modeling
point of view.

Translational surfaces defined by h∗(s; t) = f∗(s)+g∗(t) are not translation in-
variant: translating both curves f∗ and g∗ by the vector v translates the surface h∗
by the vector 2v. One would like to define translational surfaces in such a way that
translating the two generating curves by the same vector v, also translates every
point on the surface by the vector v. In this presentation, we offer an alternative
definition of translational surfaces given by the rational parametric representation
h∗(s; t) = f∗(s)+g∗(t)

2 , where f∗(s) and g∗(t) are two rational space curves. Under this
definition, these translational surfaces consist of all the midpoints of all the lines
joining a point on f∗ to a point on g∗, so these translational surfaces are invariant un-
der rigid motions: translating and rotating the two generating curves translates and
rotates these translational surfaces by the same amount. Hence, applying a rigid
motion to a translational surface can be achieved by applying the same rigid mo-
tion to the two rational space curves that generate the surface. Therefore, one can
control these translational surfaces simply by manipulating the generating curves.

In this presentation, we will investigate the translational surfaces given by the
rational parametric representation h∗(s; t) = f∗(s)+g∗(t)

2 . Our main goal is to utilize
syzygies to study translational surfaces. We will construct three special syzygies
for a translational surface from the µ-basis of one of the generating space curves. In
addition, we will examine many properties of translational surfaces, and compute
the implicit equation and singularities from these three special syzygies.
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The outline of the presentation is structured as the following. First, we intro-
duce the definition of translational surfaces, provide a few examples of translational
surfaces generated from two rational space curves, and investigate a few special
characteristics of translational surfaces. Second, we study syzygies of translational
surfaces, relate the syzygies of the generating curves to the syzygies of the cor-
responding translational surface, and compute the implicit equation of a transla-
tional surface from the resultant of the three moving planes. Third, we focus on
ruled translational surfaces and compute their implicit equations based solely on
the µ-bases of the generating curves. Fourth, we detect the self-intersections of
translational surfaces. Finally, we observe that the techniques used in this paper
can be applied with only minor modifications to the translational surfaces defined
by h∗(s; t) = af∗(s)+ bg∗(t), where a,b are real numbers and ab 6= 0. In the case
of a = b = 1, we provide a necessary and sufficient condition for a rational tensor
product surface to be a translational surface.

Systems of polynomial equations arise throughout mathematics, science, and
engineering. Algebraic geometry provides powerful theoretical techniques for
studying the qualitative and quantitative features of their solution sets. This talk
presents algorithmic tools for algebraic geometry and experimental applications,
as well as introduces software systems in which the tools have been implemented
and with which the experiments can be carried out. Computer algebra system such
as Singular [1], Macaulay 2 [2], Maple [3], and Mathematica [4] are used to com-
pute examples and generate graphics.

For instance, consider the translational surface given by

h∗(s; t) =
(s2−1,s(s2−1),0)

2
+

(t,0,−t2)

2
=

f∗(s)+g∗(t)
2

. (1)

Figure 1 generated by Mathematica [4] is an affine view of the surface h∗(s; t)
given in Equation (1), where the highlighted curves are the curves f∗(s) and g∗(t).

Figure 1: Surface h∗(s; t) = (t+(s2−1),s(s2−1),−t2)
2

The translational surface given by Equation (1) has a base point. The search
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for techniques for implicitizing rational surfaces with base points is a very active
area of research because base points show up quite frequently in practical indus-
trial design. It is often difficult to compute the multiplicity of base points, and to
implicitize a surface that has a complicated collection of base points. Singular [1]
and Macaulay 2 [2] have computer algebra packages aimed at algebraic geome-
try and commutative algebra to compute the multiplicity of the base points. The
implicit equation of the surface h∗(s; t) in Equation (2) is computed from the re-
sultant of three moving planes. Maple [3], Singular [1], and Macaulay 2 [2] have
implemented packages to compute multivariate resultant. We carried out our com-
putation via Macaulay 2 [2].

F(x,y,z) = 4x4 +16x5 +16x6−8x2y2−16x3y2 +4y4 +4x2z+16x3z

+24x4z+4y2z+24xy2z+ z2 +4xz2 +12x2z2 +2z3 (2)

= 0.
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