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An Atwood machine is a well-known device that consists of two bodies of
different masses m1, m2 attached to opposite ends of a massless inextensible thread
wound round a massless frictionless pulley (see Ref. [1]). It is assumed that each
body can move only along a vertical, and the thread doesn’t slip on the pulley.
Such Atwood’s machine is a simple mechanical system with one degree freedom
that is usually used in the course of physics for demonstration of the uniformly
accelerated motion of the system.

However, it is very difficult in practice to attain such a simple translational
motion and the oscillations of the bodies inevitably arise. These oscillations may
modify the system motion significantly and so the swinging Atwood machine has
been a subject of a number of papers (see, for example, Refs. [2, 3, 4, 5, 6]). In
particular, it has been proven that the system of differential equations describing
dynamics of swinging Atwood’s machine is not integrable, in general. It has been
shown also that, depending on the mass ratio m2/m1, the system can demonstrate
different types of motion, namely, periodic, quasi-periodic, or chaotic motion.

To clarify the physical reasons of such influence of oscillation on the system
motion in the previous paper [7] we considered the simplest generalization of the
Atwood machine when only one body of mass m1 is allowed to swing in a plane
while the other body of mass m2 > m1 can move only along a vertical. We have
shown that oscillation results in increasing of the averaged thread tension which
depends on the amplitude of oscillation. If increase of the averaged tension exceeds
(m2−m1)g, where g is a gravity acceleration, the body of smaller mass m1 can pull
the body m2 up what is not possible in the system without oscillation.

In the present paper we consider the more complicated Atwood machine when
both bodies are allowed to swing in the plane. Such a system has three degrees of
freedom and can demonstrate different kinds of quasi-periodic motion depending
on the masses difference and initial conditions. However, the equations of motion
become more complicated and their analysis requires to combine symbolic and
numerical calculations. We demonstrate here that such analysis can be successfully
done with the computer algebra system Mathematica (see Ref. [8]) that is used for
doing all relevant calculations and visualization of results.
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Figure 1: Atwood’s machine with three degrees of freedom.

1 Equations of Motion

We consider a generalized model of the simple Atwood machine when both bodies
are allowed to swing in the plane (see Fig. 1). Such a system has three degrees
of freedom and its geometrical configuration can be described in terms of three
variables, for example, two angles φ1 and φ2 determining deviations of the thread
from the vertical and a length r of the thread between the body m1 and the point,
where the thread departs from the pulley in case of φ1 = 0. Note that a length of
the thread between the body m2 and the point, where the thread departs from the
pulley, is given by (L−πR− r−Rφ2), where L is the length of the thread and R is
a radius of the pulley.

The Lagrangian of the system can be written in the form

L =
(m1 +m2)R2 + I0

2R2 ṙ2 +
m1

2
(r+Rφ1)

2 φ̇2
1

+
m2

2
(L− r−πR−Rφ2)

2 φ̇2
2 −m1g(Rsinφ1 − (r+Rφ1)cosφ1)

+m2g(Rsinφ2 +(L− r−πR−Rφ2)cosφ2) , (1)

where the dot denotes differentiation with respect to time, and I0 is a moment of
inertia of the pulley. Using Eq. (1) and doing standard symbolic calculations, we
obtain the equations of motion in the form

κ r̈ = g(cosφ1 −µ cosφ2)+(r+Rφ1)φ̇2
1 −µ(L− r−πR−Rφ2)φ̇2

2 , (2)
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Figure 2: Motion of the Atwood machine in case of m1 = m2.

(r+Rφ1)φ̈1 =−gsinφ1 −2ṙφ̇1 −Rφ̇2
1 , (3)

(L− r−πR−Rφ2)φ̈2 =−gsinφ2 +2ṙφ̇2 +Rφ̇2
2 , (4)

where µ = m2/m1,

κ =
I0 +(m1 +m2)R2

m1R2 .

2 Main result

One can readily check that equations of motion (2)-(4) cannot be solved sym-
bolically. However, choosing some realistic values of the system parameters, we
can obtain the corresponding numerical solution for different initial conditions and
analyze motion of the system.

As an example, let us consider the case of equal masses (m1 = m2) and assume
that the bodies are at rest. If the body of mass m1 gets a small horizontal initial
velocity it starts to oscillate. As a result an average value of the thread tension
becomes greater than the gravity force m2g and the oscillating body starts to move
down and pull up the second body (see [7]). However, if both bodies being at
rest get different horizontal initial velocities then both of them start to oscillate
with different amplitudes. Solving Eqs. (2)-(4) with the initial conditions φ1(0) =
φ2(0) = ṙ(0) = 0, r(0) = 0.3, φ̇1(0) = 0.4, φ̇2(0) = 0.1, for instance, we obtain a
solution shown in Fig. 2.
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One can readily see that initially the body of mass m1 oscillates with the ampli-
tude being greater than that of the body m2. Consequently, the thread tension in the
right-hand side of the system is greater than in the left-hand side and the body m1
moves down and pull up the body m2. However, a length of the thread between the
body m1 and the pulley increases and amplitude of its oscillation decreases while
amplitude of the body m2 oscillation grows up. Finally, an average tension of the
thread between the body m2 and the pulley becomes greater that the tension in the
right-hand side of the system. As a results the pulley stops and then starts to rotate
in opposite direction. Then the roles of the bodies change and the system continues
its motion. Thus, due to oscillations of the bodies the system demonstrates quasi-
periodic motion which is not possible in case of the classical Atwood machine with
bodies of equal masses.

3 Conclusions

In the present talk we have demonstrated an influence of oscillation on the Atwood
machine motion in the case when both bodies are allowed to oscillate in a plane.
Simulating motion of such Atwood’s machine with the computer algebra system
Wolfram Mathematica, we have shown that even small oscillations can completely
modify its motion, while the simple Atwood machine demonstrates only the uni-
formly accelerated motion of the bodies. Note that such simulation promotes de-
velopment of physical intuition and better understanding of the subject.
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