A Modified Hermite Interpolation with Exponential Parameterization

R. Kozera^{1,2} and M. Wilkołazka³

¹ Warsaw University of Life Sciences - SGGW, Poland, ryszard.kozera@gmail.com

² The University of Western Australia, Perth, Australia, ryszard.kozera@csse.uwa.edu.au

³ The John Paul II Catholic University of Lublin, Lublin, Poland, magdalena. wilkolazka@gmail.com

This work addresses the problem of estimating the unknown trajectory of a regular curve $\gamma: [0,T] \to E^n$ based on the so-called *reduced data* Q_m . The latter represent m + 1 ordered interpolation points $Q_m = \{q_i\}_{i=0}^m$ (with $q_{i+1} \neq q_i$) in arbitrary Euclidean space E^n subject to the constraint $q_i = \gamma(t_i)$. We assume that the respective knots $\mathscr{T}_m = \{t_i\}_{i=0}^m$ satisfying $t_i < t_{i+1}$ are not given. In order to fit Q_m with the prescribed interpolation scheme, one also needs to substitute somehow the unknown knots \mathscr{T}_m with another family of parameters $\hat{\mathscr{T}}_m = {\{\hat{t}_i\}}_{i=0}^m$ satisfying $\hat{t}_i < \hat{t}_{i+1}$. In doing so, the so-called *exponential parameterization* depending on a single parameter $\lambda \in [0,1]$ and Q_m can e.g. be used. This ultimately yields $\hat{\mathscr{T}}_m^{\lambda} = \{\hat{t}_i^{\lambda}\}_{i=0}^m \approx \mathscr{T}_m$ - see e.g. Refs. [1, 2]. Note that a special case of $\lambda = 1$ introduces the so-called *cumulative chord parameterization* of reduced data Q_m (see e.g. Ref. [1]). In the next step a classical Hermite interpolation (see Ref. [3]) $\hat{\gamma}_{H}: [0,\hat{T}] \to E^{n}$ based on Q_{m} and $\hat{\mathscr{T}}_{m}^{\lambda}$ can be invoked (with $\hat{T} = \hat{t}_{m}^{\lambda}$). However, the respective missing velocities $\{v_i = \dot{\gamma}(t_i)\}_{i=0}^m$ along Q_m are approximated here according to $\hat{v}_i = \hat{\gamma}'_{3,i}(\hat{t}_i^{\lambda})$, where $\hat{\gamma}_{3,i} : [\hat{t}_i^{\lambda}, \hat{t}_{i+3}^{\lambda}] \to E^n$ denotes a standard Lagrange cubic satisfying $\hat{\gamma}_{3,i}(\hat{t}_{i+j}) = q_{i+j}$ (for j = 0, 1, 2, 3) - see Ref. [3]. Note that here we apply in fact "overlapped" Lagrange cubics to estimate all velocities $\{v_i\}_{i=0}^m$ at $\{Q_m\}_{i=0}^m$. More precisely, for $\hat{\gamma}_{3,i+1} : [\hat{t}_{i+1}^{\lambda}, \hat{t}_{i+4}^{\lambda}]$ interpolating $\{q_{i+1+j}\}_{j=0}^3$ we adopt a similar estimate i.e. $\hat{v}_{i+1} = \hat{\gamma}_{3,i+1}'(\hat{t}_{i+1}^{\lambda})$ of $\dot{\gamma}(t_{i+1})$. For the last four interpolation points $\{q_i\}_{i=m-3}^m$ the above procedure can be repeated upon changing the order of points and taking the computed derivatives with the opposite sign. Such construction of $\hat{\gamma}_H$ based on $\hat{\mathscr{T}}_m^{\lambda}$, $\{\hat{v}_i\}_{i=0}^m$ and Q_m is coined a modified Hermite interpolation. A special case when $\lambda = 1$ is discussed in more details in Refs. [4, 5].

Given $\delta_m = \max_{0 \le i \le m-1} \{t_{i+1} - t_i\}$ the sampling \mathscr{T}_m is called *admissible* if $\lim_{m\to\infty} \delta_m = 0$. The subfamily of admissible samplings is called *more-or-less uniform* if there exists $\beta \in (0,1]$ such that $\delta_m \beta \le t_{i+1} - t_i$, holding for all $i = 0, 1, \ldots, m-1$ and arbitrary m. The question of approximating γ by modified Hermite interpolant $\hat{\gamma}_H$ is studied merely for the special case of $\lambda = 1$ i.e. for cumulative chord parameterization in Refs. [4, 5]. More specifically, quratic order of convergence in trajectory approximation is proved and confirmed numerically in the above last cited papers. We extend this result to the remaining $\lambda \in [0, 1)$

determining the exponential parameterization. Indeed the following holds:

Theorem 1 Assume that a regular $\gamma : [0,T] \to E^n$ of class C^4 with the unknown interpolation knots $\{t_i\}_{i=1}^m$ is sampled more-or-less uniformly. If $\hat{\gamma}_H$ represents a modified Hermite interpolant based on reduced data Q_m and exponential parameterization governed by $\lambda \in [0,1]$, then for some piecewise-cubic- $C^{\infty} \Psi : [0,T] \to [0,\hat{T}]$:

$$(\hat{\gamma}_H \circ \Psi)(t) = \gamma(t) + O(\delta_m^1) \text{ for } \lambda \in [0,1) \text{ and } (\hat{\gamma}_H \circ \Psi)(t) = \gamma(t) + O(\delta_m^4) \text{ for } \lambda = 1$$
(1)

Theorem 1 establishes a substantial deceleration in convergence rates for trajectory estimation (to the linear one) while λ runs over [0, 1). The latter contrasts with the fast quartic order holding for $\lambda = 1$ as specified in (1) (see also Ref. [4]). The numerical tests conducted in this work (with the aid of *Mathematica* package - see Ref. [7]) confirm the sharpness of the estimates from (1). A similar effect of the left-hand side discontinuity in convergence rate at $\lambda = 1$ is proved for piecewise-quadratic Lagrange intepolation based on exponential parameterization and Q_m - see Refs. [2, 6]. Fitting reduced data is an important problem in computer vision and graphics, as well as in engineering, microbiology, physics and other applications like medical image processing - see e.g. [1].

References

- B.I. Kvasov, *Methods of Shape-Preserving Spline Approximation*, World Scientific Publishing Company, Singapore (2000).
- [2] R. Kozera and L. Noakes, *Piecewise-quadratics and exponential parameterization for reduced data*, Applied Mathematics and Computation **221**, pp. 1–19 (2013).
- [3] C. de Boor, A Practical Guide to Spline, Springer-Verlag, New York Heidelberg Berlin (1985).
- [4] R. Kozera and L. Noakes, C¹ interpolation with cumulative chord cubics, Fundamenta Informaticae 61, 3-4, pp. 285–301 (2004).
- [5] R. Kozera, *Curve modeling via interpolation based on multidimensional reduced data*, Studia Informatica 25, 4B(61), pp. 1–140 (2004).
- [6] R. Kozera and L. Noakes, *Piecewise-quadratics and* ε *-uniformly sampled reduced data*, Applied Mathematics and Information Sciences **10**, 1, pp. 33–48 (2016).
- [7] S. Wolfram, The Mathematica Book, Wolfram Media, 5th. ed. (2003).