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1 Introduction

The understanding of the physical phenomena that govern fluid / particle flows is
continuously improving, particularly in the last decade. Transport phenomena and
solid particles deposit in the context of hydraulic turbine engine systems is multi-
disciplinary. For modeling and simulation of such flows, there are several methods
which use dynamic meshing. These methods follows the movement of the objects
in a Lagrangian way [1, 2, 3]. However, the remeshing steps can be expensive and
very difficult, especially in the 3D case.

To overcome the constraints caused by the use of adaptive meshing and reduce
the problems associated with linking steps, new methods with fixed meshing are
used. These are also called methods of fictitious domain as they extend a problem
defined on a mobile and complex area (the fluid domain) to a domain (fictional)
larger but fixed. R. Glowinski et al (see [4, 5, 6, 7, 8, 9]) are the investigators
of fictitious domain methods. If the fixed field is sufficiently simple, this kind of
method allows the use of Cartesian meshes, which allows the use of fast solvers.

Although the Navier-Stokes equations describing the behavior of a fluid still ad-
mit no evidence of existence of a general solution, they are still widely used to
describe Newtonian fluid flows. In the case of the presence of particles in the fluid,
the processing of the interaction between the fluid phase and the solid phase adds
complexity to the studied problem.

In this paper we present a method of simulating the movement of one or more
convex rigid body in a Newtonian incompressible fluid. We used a penalty method
which is based on a reformulation of the stress tensor which allows the canceling
of the deformation rate in the volume occupied by the particle. This method con-
sists on constraining the movement of the fluid to be the same as the movement of
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a particle by increasing locally the viscosity of the fluid [10, 11, 12]. This method
has been used by many authors, initially to consider the Dirichlet condition at the
edge of the field, and then to deal with the presence of an obstacle within a flow. It
has been expanded recently to deal with the stress of rigid motion for a particle in
a fluid for a finite differences approach then for finite elements [13, 14].

The objective of this work is to develop a code from FreeFem ++ that simulates
Stokes or Navier-Stokes flows (with low Reynolds number) in the presence of solid
particles. A test case on the sedimentation of a particle is presented.

2 Mathematical formulation of the problem

We consider a connected, bounded and regular domain Ω⊂ R2 (see Fig.1) and we
denote by (Bi)i=1,···,N the rigid particles, strongly included in Ω. B denotes the
whole rigid domain: B = ∪iBi. The domain Ω \B is filled with Newtonian fluid
governed by the Navier-Stokes equations. We note µ the viscosity of the fluid, p
the presure and ff the external forces exerted on it. Since we consider a Newtonian
fluid, the stress tensor σ is given by the following relation (see Eq. (1)):

σ = 2µD(u)− pI, where D(u) =
∇(u)+(∇(u))T
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Figure 1: Partcicles Bi in a Newtonian fluid.

We consider homogeneous Dirichlet conditions on ∂Ω. The presence of vis-
cosity imposes a no-slip condition on the boundary ∂B of the rigid domain.
At the initial time the particles with density ρi are distributed randomly over the
fluid. The position of the center of the ith particle is denoted by xi, by vi and ωi

its translational and angular velocities. We denote by mi and Ji the mass and the
kinematic momentum about its center of mass:
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mi =
∫

Bi

ρi, Ji =
∫

Bi

ρi‖x− xi‖2 (2)

We have to find the velocity u(u1,u2) and the pressure field p defined in Ω\B, as
well as the velocities of the particlesV := (vi=1,...,N) ∈ R2N and ω := (ωi=1,...,N) ∈
RN such that (see Eq. (3)):


ρf(

∂u
∂ t +u.∇u)−div(σ) = ff dans Ω\B,

div(u) = 0 in Ω\B,
u = 0 on ∂Ω,
u = vi +ωi(x− xi)

⊥ on ∂B, ∀i ∈ {1,··· ,N}

(3)

where ρf denotes the density of the fluid and ff = ρfgey is the external force exerted
on the fluid (gravity forces). The fluid exerts hydrodynamic forces on the particles.
Newton’s second law for these particles is written then as follows (see Eq. (4)):

mi
dVi
dt =

∫
Bi

fi−
∫

∂Bi
σn,

Ji
dωi
dt =

∫
Bi
(x− xi)

⊥.fi−
∫

∂Bi
(x− xi)

⊥.σn,
(4)

Where, fi denotes the external non-hydrodynamical forces exerted on the sphere,
such as gravity : fi =−ρigey.

3 Variational formulation and Penalisation method

The variational formulation obtained on the whole fluid/particle domain Ω is given
here after (see Eq. (5)):


Find (u, p) ∈KB×L2

0(Ω) suchthat

∫
Ω

ρ̃
Du
Dt v+2µ

∫
Ω
D(u) : D(v)−

∫
Ω

pdiv(v) =
∫

Ω
f̃.v, ∀v ∈KB∫

Ω
qdiv(u) = 0, ∀q ∈ L2

0,

(5)

with ρ̃ := ρ f 1Ω\B+∑
N
i=1 ρ f 1Bi , f̃ := f f 1Ω\B+∑

N
i=1 fi1Bi and KB = {u∈H1

0 (Ω)D(u)=
0 inB}.
Using a penalty method, we will rather consider the following problem:
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Find (u, p) ∈H1
0(Ω)×L2(Ω) suchthat

∫
Ω

ρ̃
Du
Dt v+2µ

∫
Ω
D(u) : D(v)+ 2

ε

∫
BD(u) : D(v)

−
∫

Ω
pdiv(v) =

∫
Ω

f̃.v, ∀v ∈H1
0(Ω),

∫
Ω

qdiv(u) = 0, ∀q ∈ L2(Ω),

(6)

The variational formulation (see Eq. (6)) shows that the physics behind this method
is to consider the rigid domain as a fluid with infinite viscosity.
The time discretization is performed by using the method of characteristics [15].

4 Results

In Fig. 2, we show the results of the sedimentation of elliptic particle in a closed
box filled with a Navier-Stokes fluid at different time steps.

Figure 2: Sedimentation of particule -configurations at different time steps-

5 Conclusion

In this paper, we have proposed a strategy for the numerical modeling of the mo-
tion of a convex rigid particle in a Newtonian fluid. The rigid motion is imposed
by penalizing the strain tensor, the time discretization is performed by using the
method of characteristics.
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The code was written in FreeFem++ version 3.26 and at each time step the gener-
alized Navier-Stokes problem is solved by using standard finite elements.
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