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Evaluation of electrostatic potential at an arbitrary point within a two dimen-
sional region free of electric charge containing geometrically dispersed nontrivial
configurations electrified to constant potentials applyingthe standard classic ap-
proach, i.e. Laplace equation is challenging. The challenge stems from the fact
that the solution of the Laplace equation needs to be adjusted to the boundary
conditions imposed by the configurations. Numeric solutionof the latter is chal-
lenging as it lacks generalities. An entirely different numeric solution method
is based on the application of The Mean-Value Theory. The latter is a pure nu-
meric approach; although the output of its iterated refined version is successful, it
is cumbersome. In this investigation utilizing the powerful features of Computer
Algebra Systems (CAS), specificallyMathematica by a way of example we show
an innovative approach. Our approach is based on a combination of numeric as-
pect of The Mean-Value Theory on one hand andMathematica features on the
other hand. This semi numeric-symbolic approach not only provides the desired
output, but it also generates information beyond the scope of the standard classic
method. By way of example we present the intricacies of our approach, showing
1) how the potential is evaluated and 2) how corollary information not addressed
in classic cases such as electric field is calculated as well.Our method is applied
to a two-dimensional case; its three dimensional version may easily be applied to
cases of interest.

1 Motivations and Goals

In two dimensional electrostatic it is a classic practice tomap the potential that
arises from a single common geometric object such as a line, asquare, a circle and
etc that is electrified to a potential. Stepping away from these cases one encoun-
ters multiple-body geometric configurations, each chargedto a certain potential.
Addressing the latter not only theoretically is interesting but is valued for practical
applications. Analytic solutions of these scenarios mathematically are challeng-
ing and because each scenario embodies a specific configuration, solutions lack the
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generalities. The mathematical challenges stem from the fact that the potential,
φ that is subject to Laplace equation,∇2φ = 0 ought to be in compliance with the
boundary conditions imposed by the geometry of the configuration. As such, in
most cases one relies on the numeric solution of the Laplace equation [1],[2],[3].
An entirely alternative approach to addressing the same issue is a pure numeric
method of another sort. This method by-passes the Laplace equation in its en-
tirety; it is called The Mean-Value Theory, see for instanceits applications [4].
Generally speaking one drops a virtual fishnet on the given configuration dividing
the region of interest in grids. To begin with one assigns a wisely chosen guessti-
mated numeric potential to each node of the grid. Then one replaces the initial
nodal potentials with the average of the potentials of the closest nodes. Repetition
of the procedure stabilizes the potentials. The accuracy ofthe output is controlled
by 1) recursive repetitions and 2) the fishnet mesh size; the smaller the mesh the
better the output. This method appears to require either cumbersome manual or
programming efforts.

Being aware of the latter issues, we present an effective, a short-cut approach cur-
ing both aforementioned challenges. The core of the solution is based on utilizing
a Computer Algebra System (CAS) specificallyMathematica [5],[6]. To demon-
strate the approach we craft our investigation that is composed of three sections.
In addition to Motivations and Goals, in Section 2 by a way of example we present
the detailed analysis. This section also includes the results and associated graphic
output. Having this information on hand we further the analysis by evaluating the
electric field. This is a fresh idea, literature lacks this information. We close our
work with a few remarks.

2 Physics of the problem and its solution

Consider a set of two two-dimensional kinked metallic structure shown in Fig 1.
The segments symmetrically are separated with a gap, and horizontally are ex-
tended to infinity. Assume the bottom and the top pieces are electrified to constant
potentials e.g.,φ = 0 andφ = 3.0V , respectively. The given structure resem-
bles the profile of an unusual parallel-plate capacitor; this structure is suggested in
[7]. It is one of the objectives of this investigation to determine the electrostatic
potential at any point within the plates.

According to what is outlined in Sect. 1, in order to evaluatethe potential we
drop a fishnet with a coarse mesh size on the region of interest. This is shown in
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Fig 1.

Figure 1. Display of the kinked structure with its accompanied fishnet grid.
The origin of the coordinate system conveniently is set as shown. The fishnet

is composed of a 5x11 grid. The node at the top left is p[1,1] and the one at the
bottom right is p[6,11]. The matrix below is the intuitive nodal start-up potential
assignment of the entire grid; potential of the exterior nodes are designated by x.

Utilizing this input we apply the nearest averaging values;for the scenario
at hand only four values would contribute. In other words onefourth of the
sum of the four closest adjacent nodal potentials of the start up values replaces
the initial chosen node’s potential. Repetition of the procedure stabilizes the
potentials. The presentation version displays two matrices after one and four
repetitions, respectively.

As shown, the difference between the chosen nodal potentials for the scenario
at hand just after only four recursions are negligibly small; i.e. potentials are sta-
bilized. Customarily, for two distinct reasons 1) to achieve a higher numeric
accuracy and 2) more importantly, for determining the potential at any point one is
to refine the mesh size. This is straightforward; however, itis cumbersome. In-
stead we devised a fresh, innovative approach. We utilizeMathematica numeric
interpolation. This operation utilizes the stabilized nodal potentials and in one
step produces a refined output as if an extremely fine mesh is used. What follows
is the numeric and accompanied graphic output of the interpolated procedure.
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Figure 2. The first column of the table is the ordinates of the nodes. The
second column is the corresponding potentials. The graph isthe display of the
adjacent table.

As shown the first column of the table includes not only the discrete integer y-
values of the nodes but ordinates of the points between the nodes. Consequently,
as explained in the text utilizing interpolation the secondcolumn embodies the
corresponding potentials. The adjacent graph is the display of the Table. Accord-
ingly, the interpolated plot gives the potential of any arbitrary y-valued ordinate.
For the sake of clarification the output of this procedure is detailed for the 6th ver-
tical grid-line. One may follow the same approach tabulating and plotting curves
for any of the vertical grid-lines. Next we extend the procedure for horizontal grid
lines with ordinates of 1,2 and 3. These are shown in Fig 3. Each set of curves
is composed of a pair of lines. The dashed lines represents the point-to-point
connected curves; the smooth solid lines are the interpolated curves.
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Figure 3. Coordinate of the x-axis is the same as the coordinate of the grid-
lines in Fig 1. Dots are the potentials corresponding to the last matrix in the text.
The dashed lines are the point-to-point connected curves. The smooth solid curves
are the interpolated potentials.

With this information at hand utilizing,~E = −~∇φ surprisingly we are able
to calculate the associated electric fields. This procedureembodies two valued
points: 1) as shown the interpolated data is a continuous function making the gra-
dient operable. Otherwise we would have to replace the gradient with a difference
equation i.e.,∆φ

∆ξ whereξ is the distance between the potential contours. This
would have given less accurate fields. 2) As shown in Fig 3 potential is a two di-
mensional function,φ(x,y) so that its associated field is a two dimensional vector,
{Ex,Ey}. For a sake of completeness two such continuous fields associated with
two grid-lines are tabulated and graphed. Presentation version displays the tables
and their associated figures.

By tabulating and plotting these fields we illustrate that with a coarse mesh
shown in Fig 1 we are able to evaluate the fields as if the mesh was refined and
optimized.

3 Conclusions

Obtaining analytic solution even for two dimensional semi complicated geometri-
cally dispersed electrified objects is challenging. Laplace equation is the master
equation that needs to be adjusted to the relevant boundaries; this makes the solu-
tion peculiar to a specific scenario, as such it lacks generalities. An alternative
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solution other than numeric solution of Laplace equation isthe Mean-Value The-
ory. This requires refined cumbersome programming. In this investigation we
show utilizing a Computer Algebra System (CAS), specifically Mathematica a
less cumbersome, satisfactory shortcut solution can be obtained. By way of ex-
ample we present the specifics of our approach. For the sake ofcompleteness we
utilize the numeric output of the analysis and semi-analytically computed axillary
quantities such as the fields. The presented approach conveniently may be applied
to configurations of interest and readily may be extended to 3D configurations.
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