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Evaluation of electrostatic potential at an arbitrary peuithin a two dimen-
sional region free of electric charge containing geomallsiadispersed nontrivial
configurations electrified to constant potentials applytimg standard classic ap-
proach, i.e. Laplace equation is challenging. The cha#lestgms from the fact
that the solution of the Laplace equation needs to be adjustehe boundary
conditions imposed by the configurations. Numeric solubbthe latter is chal-
lenging as it lacks generalities.  An entirely different raria solution method
is based on the application of The Mean-Value Theory. Therléd a pure nu-
meric approach; although the output of its iterated refirmdion is successful, it
is cumbersome. In this investigation utilizing the powéfaatures of Computer
Algebra Systems (CAS), specificallylathematica by a way of example we show
an innovative approach. Our approach is based on a contmnaftinumeric as-
pect of The Mean-Value Theory on one hand ahththematica features on the
other hand. This semi humeric-symbolic approach not ontyiges the desired
output, but it also generates information beyond the scépleeostandard classic
method. By way of example we present the intricacies of opr@ach, showing
1) how the potential is evaluated and 2) how corollary infation not addressed
in classic cases such as electric field is calculated as v@lir method is applied
to a two-dimensional case; its three dimensional version @aasily be applied to
cases of interest.

1 Motivations and Goals

In two dimensional electrostatic it is a classic practicarap the potential that
arises from a single common geometric object such as a lisgyare, a circle and
etc that is electrified to a potential. Stepping away frons¢heases one encoun-
ters multiple-body geometric configurations, each charged certain potential.
Addressing the latter not only theoretically is interegtiut is valued for practical
applications. Analytic solutions of these scenarios mattecally are challeng-
ing and because each scenario embodies a specific confoguistiutions lack the



generalities. The mathematical challenges stem from tttettiat the potential,
@ that is subject to Laplace equatidi®g = 0 ought to be in compliance with the
boundary conditions imposed by the geometry of the conftgura As such, in
most cases one relies on the numeric solution of the Laplgeaten [1],[2],[3].

An entirely alternative approach to addressing the samm issa pure numeric
method of another sort. This method by-passes the Laplag&tieq in its en-
tirety; it is called The Mean-Value Theory, see for instaftseapplications [4].
Generally speaking one drops a virtual fishnet on the givefigaration dividing
the region of interest in grids. To begin with one assignsselyichosen guessti-
mated numeric potential to each node of the grid. Then onlaceg the initial
nodal potentials with the average of the potentials of theadt nodes. Repetition
of the procedure stabilizes the potentials. The accuratysobutput is controlled
by 1) recursive repetitions and 2) the fishnet mesh size; nfadler the mesh the
better the output. This method appears to require eithebetsonme manual or
programming efforts.

Being aware of the latter issues, we present an effectivieod-sut approach cur-
ing both aforementioned challenges. The core of the saolugibased on utilizing
a Computer Algebra System (CAS) specificaNjathematica [5],[6]. To demon-
strate the approach we craft our investigation that is caagmf three sections.
In addition to Motivations and Goals, in Section 2 by a wayxafraple we present
the detailed analysis. This section also includes thetseand associated graphic
output. Having this information on hand we further the asislyy evaluating the
electric field. This is a fresh idea, literature lacks thi®imation. We close our
work with a few remarks.

2 Physics of the problem and its solution

Consider a set of two two-dimensional kinked metallic e shown in Fig 1.
The segments symmetrically are separated with a gap, anzbhtally are ex-
tended to infinity. Assume the bottom and the top pieces aréled to constant
potentials e.g.p = 0 and@ = 3.0V, respectively. The given structure resem-
bles the profile of an unusual parallel-plate capacitos $itiucture is suggested in
[7]. Itis one of the objectives of this investigation to deténe the electrostatic
potential at any point within the plates.

According to what is outlined in Sect. 1, in order to evalue potential we
drop a fishnet with a coarse mesh size on the region of inter€bts is shown in
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Figure 1. Display of the kinked structure with its accompaniishnet grid.

The origin of the coordinate system conveniently is set asvsh The fishnet
is composed of aX@.1 grid. The node at the top left is p[1,1] and the one at the
bottom right is p[6,11]. The matrix below is the intuitivedad start-up potential
assignment of the entire grid; potential of the exterioredre designated by x.

X X xXx X X 3. x X X X
X x x x 3. 2. 3. X X X
3. 3. 3. 3. 2. 1. 2. 3. 3. 3. 3.
2. 2. 2. 2. 1. 0. 1. 2. 2. 2. 2.
1. 1. 1. 1. 0. x 0. 1. 1. 1. 1.
0. 0. 0. 0. x x x 0. 0. 0. O.

Utilizing this input we apply the nearest averaging valuies;the scenario
at hand only four values would contribute.  In other words tmath of the
sum of the four closest adjacent nodal potentials of the sfawvalues replaces
the initial chosen node’s potential.  Repetition of the paare stabilizes the
potentials.  The presentation version displays two matriier one and four
repetitions, respectively.

As shown, the difference between the chosen nodal poteritiathe scenario
at hand just after only four recursions are negligibly smadl potentials are sta-
bilized.  Customarily, for two distinct reasons 1) to acleiew higher numeric
accuracy and 2) more importantly, for determining the pidéat any point one is
to refine the mesh size. This is straightforward; howeves, ¢Gumbersome. In-
stead we devised a fresh, innovative approach. We utiltaghematica numeric
interpolation.  This operation utilizes the stabilized abgdotentials and in one
step produces a refined output as if an extremely fine mesleds ugd/hat follows
is the numeric and accompanied graphic output of the intaigd procedure.
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Figure 2. The first column of the table is the ordinates of tbdes. The

second column is the corresponding potentials. The grapieislisplay of the

adjacent table.

As shown the first column of the table includes not only thermdite integer y-
values of the nodes but ordinates of the points between tliesno Consequently,
as explained in the text utilizing interpolation the secaodimn embodies the
corresponding potentials. The adjacent graph is the gisglthe Table. Accord-
ingly, the interpolated plot gives the potential of any &bl y-valued ordinate.
For the sake of clarification the output of this procedureeimilied for the 6th ver-
tical grid-line. One may follow the same approach tabutptind plotting curves
for any of the vertical grid-lines. Next we extend the pragedfor horizontal grid
lines with ordinates of 1,2 and 3. These are shown in Fig 3. hEet of curves

is composed of a pair of lines.

The dashed lines represeatpdimt-to-point

connected curves; the smooth solid lines are the integubledirves.
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Figure 3. Coordinate of the x-axis is the same as the codedfathe grid-
lines in Fig 1. Dots are the potentials corresponding to dlseratrix in the text.
The dashed lines are the point-to-point connected curvég smooth solid curves
are the interpolated potentials.

With this information at hand utilizingk = —ﬁ(p surprisingly we are able
to calculate the associated electric fields. This procedmbodies two valued
points: 1) as shown the interpolated data is a continuougibmmaking the gra-
dient operable. Otherwise we would have to replace the gmaeith a difference
equation i.e.,A—g"whereE is the distance between the potential contours.  This
would have given less accurate fields. 2) As shown in Fig 3ntiatieis a two di-
mensional functiong(x,y) so that its associated field is a two dimensional vector,
{Ex,Ey}. For a sake of completeness two such continuous fields assdaiith
two grid-lines are tabulated and graphed. Presentaticgioredisplays the tables
and their associated figures.

By tabulating and plotting these fields we illustrate thathwa coarse mesh
shown in Fig 1 we are able to evaluate the fields as if the meshrefaned and
optimized.

3 Conclusions

Obtaining analytic solution even for two dimensional seomplicated geometri-
cally dispersed electrified objects is challenging. Laplaguation is the master
equation that needs to be adjusted to the relevant bousd#rie makes the solu-
tion peculiar to a specific scenario, as such it lacks geitiesal An alternative



solution other than numeric solution of Laplace equatiothésMean-Value The-
ory. This requires refined cumbersome programming. In thisstigation we
show utilizing a Computer Algebra System (CAS), specificaMathematica a
less cumbersome, satisfactory shortcut solution can kengat. By way of ex-
ample we present the specifics of our approach. For the satagfleteness we
utilize the numeric output of the analysis and semi-anzdyif computed axillary
guantities such as the fields. The presented approach gentlgrmay be applied
to configurations of interest and readily may be extendedtadhfigurations.
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