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The Atwood machine is a well-known device that is usually used to demon-
strate the uniformly accelerated motion (see Ref. [1]). It consists of two bodies
attached to opposite ends of a massless inextensible thread wound round a mass-
less frictionless pulley. It is assumed that each body can move only along a vertical,
and the thread doesn’t slip on the pulley. Such Atwood’s machine is a simple me-
chanical system with one degree freedom and one can easily show that the bodies
acceleration is given by

a =
m2 −m1

m2 +m1
g , (1)

where m1 and m2 (m2 >m1) are the bodies masses, and g is the gravity acceleration.
As the acceleration a can be easily found experimentally Eq. (1) is often used to
find the local Earth gravity constant g.

However, doing the corresponding experiment, one can observe that the result
obtained may differ noticeably from the true value of g. Trying to explain such
result, one can notice that it is very difficult to constrain the bodies to move strictly
along verticals and to avoid their oscillations.

It should be noted that swinging Atwood’s machine has been a subject of a
number of papers (see, for example, Refs. [2, 3, 4, 5, 6]) and its mechanical be-
haviour has been studied quite well. In particular, it has been proven that the sys-
tem of differential equations describing dynamics of swinging Atwood’s machine
is not integrable, in general. It has been shown also that, depending on the mass
ratio m2/m1, the system can demonstrate different types of motion, namely, peri-
odic, quasi-periodic, or chaotic motion but physical reasons of such behaviour of
the system and significance of oscillations has not been usually discussed.

The main purpose of the present paper is to analyze the terms appearing in
the equations of motion owing to oscillations and to study their influence on the
system behaviour. Combining symbolic and numerical calculations turns out to
be very useful for this study because the equations of motion are not integrable.
The validity of the results obtained is demonstrated by means of the simulation of
motion of the swinging Atwood machine with the computer algebra system Math-
ematica (see Ref. [7]) that is used for doing all relevant symbolic and numerical
calculations and visualization of the results.

1



Figure 1: The swinging Atwood machine.

1 Equations of Motion

We consider here a generalized model of the simple Atwood machine when the
body of mass m1 is allowed to swing in a plane while the other body of mass
m2 is constrained to move along a vertical (see Fig. 1). Such a system has two
degrees of freedom and its geometrical configuration can be described in terms
of two variables, for example, an angle of the pulley rotation ψ , and an angle φ
determining deviation of the thread from a vertical. Note that the length L of the
thread between the body m1 and the point, where the thread departs from pulley,
is given by the relationship L = L0 +R(φ −ψ), where L0 is its initial value, R is a
radius of the pulley, and initial values of ψ and φ are assumed to be equal (ψ0 =
φ0). Assuming the thread doesn’t slip on the pulley, we obtain r = r0+R(ψ −ψ0),
where r0 is an initial length of the thread between the body m2 and the pulley.

The Lagrangian of the system can be written in the form

L =
1
2

m1 (L0 +R(φ −ψ))2 φ̇2 +
1
2
(
I0 +(m1 +m2)R2) ψ̇2

−m1g(Rsinφ − (L0 +R(φ −ψ))cosφ)+m2gRψ , (2)

where the dot denotes differentiation with respect to time, and I0 is a moment of
inertia of the pulley. Using Eq. (2) and doing standard symbolic calculations, we
obtain the equations of motion in the form

ψ̈ =
R

I0 +(m1 +m2)R2

(
g(m2 −m1 cosφ)−m1(L0 +R(φ −ψ))φ̇2) , (3)

φ̈ =
1

L0 +R(φ −ψ)

(
2Rψ̇φ̇ −gsinφ −Rφ̇2) . (4)
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Figure 2: Motion of the swinging Atwood machine in case of m1 = m2.

One can readily see that in case of absence of oscillations, when φ ≡ 0, Eq. (4)
is satisfied identically, while Eq. (3) takes the form

ψ̈ =
gR(m2 −m1)

I0 +(m1 +m2)R2 . (5)

Obviously, it determines the uniformly accelerated motion of the system and gen-
eralizes Eq. (1) to the case of nonzero mass of the pulley.

2 Main results

Taking into account planar oscillations of the body m1 complicates the equations of
motion significantly (see Eqs. (3)-(4)) and their general solution cannot be found
in an analytical form. However, choosing some realistic values of the system pa-
rameters, we can find the corresponding numerical solution for different initial
conditions and to get some ideas on possible motion of the system.

At first we consider the case of equal masses (m1 = m2) and assume that the
bodies are at rest. As a vertical initial velocity of the bodies induces only their uni-
formly accelerated motion without oscillations we give the body m1 a small initial
velocity in a horizontal direction. Due to the fact that both bodies have the same
mass and are initially in equilibrium, it seems to be quite natural to assume that the
system should move in the neighborhood of its equilibrium position. However, this
equilibrium position turns out to be unstable and the system moves away from the
equilibrium even for very small values of initial velocity.

Actually, solving Eqs. (3)-(4)) with the initial conditions ψ(0)= ψ̇(0)=φ(0)=
0, φ̇(0) = 0.1, we obtain a solution shown in Fig. 2. One can readily see that arising
oscillation of body m1 results in a clockwise rotation of the pulley and movement
of the bodies in vertical direction. Amplitude of oscillation decreases with time
and the term in the right-hand side of Eq. (3) tends to zero as it should be in case of
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Figure 3: Motion of the swinging Atwood machine in case of m1 < m2.

the absence of oscillation and equal masses of the bodies. Thus, due to oscillation
of the body m1 a transformation of its initial horizontal momentum into vertical
motion of the bodies takes place. A physical reason of such transformation is an
increase of a tension of the thread due to oscillation of the body m1 and appearance
of the centrifugal force m1Lφ̇2. Computing an average value of the net force in
the right-hand side of Eq. (3) shows that it really becomes smaller than zero when
body m1 oscillates, in spite of the equal masses of the bodies.

Note that the thread tension depends on amplitude of the body m1 oscillation.
If the amplitude is quite small and the mass of body m2 is greater than mass m1
the net force in the right-hand side of Eq. (3) may become positive. Then the
pulley starts to rotate counterclockwise and the thread length L between the body
m1 and pulley decreases. The amplitude of oscillation and the thread tension starts
to grow up and if the masses difference m2 −m1 is less than some critical value
the net force in the right-hand side of Eq. (3) becomes negative again. As a result
angular velocity ψ̇ of the pulley changes the sign and the system starts to move
in opposite direction. Then amplitude of oscillation decreases again and when its
value becomes small enough angular velocity ψ̇ changes the sign and the process
repeats. Thus, we can observe a quasi-periodic motion of the swinging Atwood
machine (see Fig. 3). This result is quite unexpected and it should be taken into
account when the Atwood machine is used for measuring the gravity acceleration.

3 Conclusions

In the present talk we have analyzed an influence of oscillation on the Atwood
machine motion in the simplest case when only one body is permitted to oscillate
in a plane. Nevertheless, we have shown that even such oscillation can completely
modify a motion of the system, while the simple Atwood machine demonstrates
only the uniformly accelerated motion of the bodies. Of course, a mass and size
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of the pulley and changing the length L between the body m1 and pulley owing
to winding the thread on the pulley affect on the system motion, as well. Doing
necessary calculation, we have shown that these factors only change an inertness
of the system and modify oscillation of the body m1 but do not change qualitatively
the system behaviour.

It should be noted that there are many physical problems which seem to be quite
simple although the corresponding mathematical models are rather complicated to
be solved and analyzed by hand. But application of the modern computer algebra
systems such as Wolfram Mathematica, for example, helps a lot in analyzing such
problems and promotes development of physical intuition and better understanding
of the subject.
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